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One major difference between 3G cellular networks and Wireless LANs is in how packet losses are dealt with. 3G cellular networks
employ selective repeat ARQ (SR-ARQ) which may result in packet-reordering due to local retransmissions. Wireless LANs employ
stop-and-wait ARQ which may drop some packets in case the buffer overflows. While much work has been performed for TCP
throughput enhancement with vertical handover between wired networks and wireless networks, little attention is paid to the
vertical handover between two different wireless networks. It is expected for majority of new mobile devices to be able to connect
to both 3G cellular networks and wireless LANs by being equipped with multiple wireless interfaces. If this is the case, on-going
TCP transmission may move between 3G cellular networks and wireless LANs. In this paper, we propose a scheme to improve
TCP throughput with vertical handoff between 3G cellular networks and wireless LANs. For this we develop an algorithm which
differentiates packet-reordering from packet losses and congestion losses from wireless losses. Simulation of our algorithm using
ns-2 shows significant increase in throughput as large as 80% compared to TCP-SACK. The proposed scheme is able to respond to
the change of loss pattern and then improve the TCP throughput during handover.

Copyright © 2009 C. H. Lim and J. W. Jang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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1. Introduction

Vertical handover [1] refers to the process of changing inter-
faces for a mobile node with multiple network interfaces to
move from one network to another network. Recent mobile
devices with two or more interfaces are able to connect to
different types of networks. Previous researches on vertical
handover have addressed the handling of the difference
in bandwidth-delay products between two different types
of networks (e.g., 3G cellular networks and WLANs) [2–
4]. Known TCP enhancement schemes over wireless packet
losses [5–8] have paid little attention to vertical handover
cases. Differentiation of congestion losses from wireless
losses over a network which consists of a wired part and
a wireless part is performed in [5, 6], and the detection of
packet-reordering due to the retransmission at the link layer
on a wireless last hop is dealt with in [8].

In this paper, we consider a new problem that an on-
going TCP flow on a mobile node may experience packet
losses of different natures over vertical handover depending
on link layer retransmission schemes involved. For example,
the packet can be lost due to wireless error over WLAN
or due to congestion loss over the wired part. Or packets
may be regarded as loss due to reordering which happens
over 3G cellular networks due to its recovery mechanism.
To obtain best TCP throughput over vertical handover,
we need to accurately identify these three different causes
of packet loss, congestion loss, wireless loss, and packet-
reordering.

To address this problem, we propose a new TCP con-
gestion control scheme which adapts to the link layer trans-
mission schemes involved in vertical handover. Specifically,
we deal with handover between 3G and WLAN which, we
expect, would be most prevailing in the near future mobile
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environment. The proposed scheme is a modification of loss
differentiation (LD) scheme [7] to improve its performance
over handover between 3G and WLAN. The proposed
scheme deals with wireless/wireless handover problem, while
the original LD differentiates wireless loss from congestion
loss and thus with steady-state wired/wireless problem. If we
employ the LD in its original form for this new problem,
the LD does not function as expected. The key parameters
of LD have been tuned over time to the network and do
not fit new network immediately after the handover. TCP-
DCR (Delayed Congestion Response) [8] works well over 3G
cellular networks, but not for handover. F-RTO (Forward
Retransmission Timeout) [9] can be used over handover.
However, the performance of proposed scheme excels the
F-RTO. The proposed scheme significantly improves any
of the algorithms mentioned above for handover from
WLAN to 3G cellular packet network or vice versa. Figures
11, 12, 13, and 14 show the simulation results before
handover and after handover for various scenarios. For
example, our scheme (proposed scheme II) excels DCR
by 80% in throughput averaged for 250 seconds after
handover. Furthermore, our scheme outperforms the simple
combination of LD and DCR (proposed scheme I) by
about 60% in throughput averaged for 250 seconds after
handover.

We summarize our contribution as follows. Proposed
schemes are not mere combinations of known algorithms
(LD, TCP-DCR and/or FRTO). First, we solve a new problem.
We try to solve the problem of TCP throughput degradation
over vertical handover between 3G cellular packet networks
and Wireless LANs, while the original LD [7] is developed for
TCP improvement for wired/wireless paths. In other words,
our scheme deals with wireless/wireless handover problem,
while the original LD deals with steady-state wired/wireless
problem.

Second, we do not combine three algorithms in their
original forms. For example, if we employ the LD in its
original form for this new problem, the LD does not
function as expected. On handover, the key parameters
of LD (RTTmin, RTTavg, RTTdev, etc.) might not closely
reflect the current condition of the new wireless network
for some time. The reason is that the parameters have been
tuned to the old wireless network before handover and
therefore are not supposed to be used for the new wireless
network. We modified the LD to deal with the problem of
LD over handover. Similarly, TCP-DCR [8] works well over
3G cellular networks, but not for handover. F-RTO [9] can
be used over handover. However, our scheme overlaps with
F-RTO only in the detection of handover. We may avoid
using F-RTO by using one of known cross-layer approaches
[9] for detection of handover. We choose to incorporate the
handover detection part from the F-RTO since we want to
retain layer independency (so that our scheme may work
independently from link layer).

Third, our scheme significantly improves any of the
algorithms mentioned above for handover from WLAN to
3G cellular packet network or vice versa. Figures 11 through
14 show the simulation results before handover and after
handover for various scenarios.

The rest of this paper is organized as follows. We
define the problem of TCP throughput enhancement over
vertical handover between 3G networks and WLAN in
Section 2. Related works are summarized in Section 3. Pro-
posed schemes are presented in Section 4. The performance
evaluation of our schemes is provided in Section 5. Section 6
concludes the paper.

2. Problem Definition

The retransmission technology at a wireless link layer can
hide the packet loss from the upper layer, for example, TCP.
Despite this retransmission, packet losses are still exposed to
the TCP layer [10, 11] as shown in Figure 1. The packet losses
can reduce the overall TCP throughput no matter where they
come from. We consider two types of network: IEEE 802.11-
based wireless LAN and 3G packet network.

IEEE 802.11-based wireless LAN adopts the Stop-and-
Wait ARQ [12] into their link retransmission technique.
In this scheme, when a packet is lost, the sender (access
point) retransmits the lost packet several times to a mobile
node. The packet loss is exposed to the TCP layer when the
number of retransmission trials exceeds the constraint [11].
Then, the TCP sender corresponding to the mobile node
halves its congestion window. This leads to reduced TCP
throughput.

3G packet network can hide most of packet losses to
TCP layer due to selective-repeat ARQ [13, 14]. However,
this retransmission technology may generate out-of-order
packets. On packet-reordering, the TCP sender retransmits
the lost packet and reduces its sending window even though
the receiver receives all of packets without losses. Some
packets are still lost even with packet loss rate of 1% due
to three reasons: queue overflow at link layer, timeout, and
the number of transmitting packets more than the size of the
retransmission queue [10].

A mobile node with two or more different types of
the link layer interface (e.g., wireless LAN and 3G packet
network) needs to be able to handle the packet loss
and packet-reordering problem. Many known schemes on
the packet losses over wireless links mainly deal with
classification of the causes of packet losses [6, 7]. They
have improved TCP throughput over wired and wireless
network. Packet-reordering due to the advanced link layer
retransmission is considered as a loss by TCP [8]. Generally,
end-to-end loss differentiation schemes could keep their TCP
congestion window against packet-reordering. However,
they may redundantly retransmit the packet due to packet-
reordering.

Our assumption on the packet loss based on literatures is
as follows:

(1) packet loss model over WLAN: Gilbert 2-state
Markov chain [15],

(2) packet loss model over 3G: uniformly random loss,

(3) packet-reordering over 3G:

(a) uniformly random event,
(b) swapping a packet for the next packet [8, 16].
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Figure 1: Three packet loss scenarios: (1) congestion losses over the wired network, (2) packet loss over WLAN, and (3) packet loss and
packet reordering over 3G packet network.

3. Related Work

The delayed congestion response scheme (TCP-DCR) [8]
distinguishes packet-reordering from congestion losses over
3G networks. This scheme waits for the normal ACK to han-
dle packet-reordering to reduce unnecessary retransmission
on three duplicate ACKs generated due to reordered packets.
However this scheme cannot distinguish wireless losses from
congestion losses. Actually, packet losses as well as packet-
reordering happen on 3G network.

The loss differentiation schemes differentiate congestion
losses from wireless losses [6, 7]. These schemes improve
TCP throughput over wireless losses by classifying the
cause of packet losses. However, they also classify packet-
reordering into packet losses, and therefore retransmit
unnecessary packets.

IEEE 802.21 framework [17] deals with vertical han-
dover: a mobile node discovers a new access link, registers
itself to the new network, disconnects itself from the old
access link, and communicates with corresponding host over
the new access link. However, IEEE 802.21 framework does
not include the transport layer to support vertical handover.
TCP is still exposed to losing packets due to difference
among access links and several sources of packet losses (e.g.,
congestion, wireless errors, and packet-reordering).

Recent research on TCP modifications for vertical han-
dover has focused on compensating for the difference of
link delay or bandwidth-delay product between two different
wireless links [2–5]. These problems arise when a mobile
node moves to the network with a link layer technology
different from the current network. If a mobile node moves
to the network with a smaller bandwidth-delay product, the
mobile node may lose packets since its current congestion
window is larger than the new bandwidth-delay product.

In [2], a mobile node estimates the bandwidth-delay
products (BDP) of the both paths before and after the
handover. After performing the vertical handover procedure,
the mobile node then returns the ACK at the rate according
to the bandwidth of the new wireless access link. When the
BDP becomes smaller, the TCP receiver adjusts congestion
window (cwnd) by sending the triple duplicate acknowledge-
ments (ACKs). When the BDP becomes larger, the receiver

returns many ACKs to increase the cwnd rapidly. This
compensation needs supports of link layer or of the access
node of wireless network. In [3], network layer controls the
route of ACKs during vertical handover. In particular, for
handover from a fast link to a slow link, the ACKs of the first
few slow-link packets are routed to the old fast link to reduce
the gap between old RTT and new RTT. For handover from
a slow link to a fast link, similar procedure is performed. In
[4], the TCP receiver sets the awnd (acknowledged window)
to the minimum value of the receiver window size and the
estimation of the maximum BDP over GPRS network at the
receiver-side, and reports it to the sender. The maximum
BDP is calculated as follows: the TCP receiver counts the
amount of TCP data received from the instant; a timestamp
is put on an acknowledgement (ACK) to the instant; the TCP
packet carrying the echoed timestamp has been received [4].
This scheme follows end-to-end semantics and can be easily
implemented at mobile node.

There has been a TCP solution to facilitate smooth
handover with the initialization of the TCP sender between
two different types of networks [5]. Their TCP solution is
for a TCP receiver to trigger the vertical handover event, and
for the corresponding TCP sender to initialize the congestion
window, slow-start threshold, and retransmission timer on
the vertical handover event. This scheme can help a TCP flow
adjust its congestion window to the changed BDP.

These previous researches have focused on only the
difference of bandwidth-delay product (BDP) between two
different packet networks when the vertical handover occurs.
The shrinking of BDP increases the number of dropped
packets in proportion to the difference between the size of
TCP’s congestion window and the size of the new BDP. We
know that the BDP can be changed when a mobile node
connects to a new network with a link layer different from
the previous network. This problem should be addressed.

However, the focus of our paper is not on the adaptation
of TCP for the change in the BDPs of the links but on
the adaptation of TCP for the change in the link-level
retransmission schemes on handover. Moreover, we are not
alone in assuming the same fixed delay in wired part of both
paths in simulation setup for TCP adaptation over vertical
handoff [18]. We assume that the change of BDP over the
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vertical handover does not happen, or that, at least, the
difference of the BDPs has been compensated. According to
[19], the BDP of 3G cellular network and WLAN could be
similar as 15 Kbytes and 14 Kbytes, respectively.

4. Proposed TCP Modification

In this section, two new TCP congestion control schemes to
solve TCP throughput degradation over vertical handover
are proposed. Proposed scheme I (also called DCR-LD)
is basically a combination of our loss differentiation (LD)
scheme [7] and the TCP-DCR [8]. Proposed scheme II
(also called DCR-FRTO-LD) is a modification of LD which
borrows handover detection algorithm from the Forward-
Retransmission Timeout (F-RTO) [9] and incorporates the
TCP-DCR scheme for improved throughput over 3G.

Proposed scheme I improves TCP throughput over
wireless packet losses and packet-reordering. On receiving
three duplicate ACKs, the DCR part of the proposed scheme
I differentiates real packet losses from packet-reordering. On
duplicate ACK, it waits for a new ACK for the duration one
estimated RTT. If a TCP sender receives a new ACK, the
duplicate ACK is considered due to packet-reordering, and
the TCP sender keeps its current window size. Otherwise,
the loss differentiation scheme is invoked in an estimated
RTT to identify the cause of the loss. If the measured RTT
just before the duplicate ACK is lower than the threshold,
the loss is classified as wireless loss, and then the congestion
window is allowed to retain the current value. Otherwise, the
TCP sender regards the loss as congestion loss and halves the
congestion window. Consequently, proposed scheme I is able
to identify the three types of packet losses, packet-reordering,
wireless loss, and congestion loss.

F-RTO [9] is for the TCP sender to keep the congestion
window with detection of delay spike due to vertical
handover and to reset the measured RTT and its devia-
tion to initial values. When a timeout event happens, F-
RTO algorithm sends two probe packets of new sequence
numbers. If a normal ACK is received, F-RTO assumes
that the vertical handover has occurred, and the TCP
timeout retransmission procedure is cancelled. Otherwise,
the retransmission procedure is invoked. We may avoid using
F-RTO in our proposed scheme II by using one of known
cross-layer approaches [18] for detection of handover.

In proposed scheme II, the measured RTT, its deviation,
and the minimum RTT are reset to new measured values to
prepare LD into the new wireless environment. The current
congestion window is retained. Furthermore, LD is not
invoked for several rounds until the parameters needed for
LD are tuned to the new wireless link.

For completeness of presentation, we present our loss
differentiation scheme [7] and its proposed modification for
handover in Section 4.1. The modified scheme is used in
proposed schemes I and II.

4.1. Loss Differentiation Scheme and Its Modification for
Handover. In Section 4.1.1, we briefly review our loss dif-
ferentiation scheme [7] which is originally proposed to infer

the cause of each packet loss as congestion loss over wired
part or wireless loss for wired/wireless networks. Then the
modification of LD for vertical handover is presented in
Section 4.1.2.

4.1.1. Loss Differentiation Scheme. Let Tcur denote the RTT
measured immediately before the current packet loss. It
is used in (1) as an indicator. The RTT consists of the
propagation delay and the queueing delay [10]. Let Tavg and
Tdev denote an exponentially weighted moving average of
RTT and the deviation, respectively. The initial values of Tavg

and Tdev are set to 0 and 0.5 s, respectively. They are updated
by Tavg = (7/8)Tavg + (1/8)Tcur and Tdev = (3/4)Tdev +
(1/4)|Tavg − Tcur|. Let Tmin denote the propagation delay
which is reset by the expiration of the retransmission timer.
The current packet loss is determined to be a congestion loss
if (1) is satisfied:

Tcur − Tavg

Tdev
> 2
(
Tmin

Tcur

)k
− 1. (1)

We assume that the connection between the source and the
destination is on a fixed path throughout the connection’s
lifetime.

The LD [7] accurately classifies congestion and random
losses over varying network parameters, that is, buffer
size, wireless random loss rate, and so forth. This scheme
can reliably classifies the congestion loss with an accuracy
close to 100% even with a small buffer of size the 20%
of the bandwidth-delay product and has less dependency
on network parameters compared with other schemes in
literature.

4.1.2. Proposed Modification of Loss Differentiation Scheme for
Handover. In the original LD [7], we have assumed that the
connection between the source and the destination is on a
fixed path throughout the connection’s lifetime. However,
on vertical handover, a mobile node may change its last
wireless hop to a different link layer. This implies that the
characteristics of the path, that is, propagation delay and the
cause of packet losses, may change. We modify the LD in such
a way that, on vertical handover, the parameters for the loss
differentiation are reset for LD to accurately infer the cause
of packet losses on the changed wireless link.

We show via simulations the efficiency of the modified
loss differentiation scheme when the vertical handover
occurs. The parameters setup and the environment are the
same as Table 1 in Section 5. Since the loss differentiation
depends on the measured RTT and its statistical values, it is
important how soon statistical values are to become stable
after handover. Equation (2) is derived from (1):

Tcur > Tavg + Tdev

(
2
(
Tmin

Tcur

)k
− 1

)
. (2)

The left-hand side of (2) is the measured RTT. The right-
hand side of (2) is the threshold of loss differentiation. Each
term in (2) is updated on receipt of an acknowledgement
packet. A packet loss is regarded as a congestion loss if the
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measured RTT(Tcur) is greater than the threshold, otherwise,
a wireless loss.

We modifies the retransmission timeout procedure in
TCP to set statistical values, for example, Tavg and Tdev, to the
initial values on vertical handover, and to set the propagation
delay Tmin to a large value. We monitor the measured
RTT and the threshold. The purpose of this monitoring
is to determine if the modified loss differentiation scheme
accurately identifies congestion loss even when the statistical
values are yet to be stabilized after handover.

In our simulation scenario, it is assumed that the
spurious timeout during vertical handover is set to be equal
to 3 seconds and that the bandwidth-delay product of 3G
network is the same as WLAN (the reasoning behind this
assumption is provided by the last paragraph of Section 3).
The timeout event of handover is invoked by pausing
the simulation for several seconds. To simulate 3G links,
bandwidth and delay are set to 1 Mbps and 200 milliseconds,
respectively. To simulate WLAN, bandwidth and delay are set
to 10 Mbps and 20 milliseconds. There is no cross traffic and
no wireless packet loss.

Figure 2 shows the vertical handover from 3G network to
WLAN. The loss differentiation scheme correctly indicates
noncongestion when Tcur is close to Tmin and congestion
when Tcur is over the threshold in (2). Actually, this case is
to simulate that the mobile moves from a slow link to a fast
link. Thus, Tmin adapts into a lower value over handover to
the faster link.

The case of the vertical handover from WLAN to 3G
network needs requires that the minimum RTT Tmin is
set to a great initial value on handover. The original loss
differentiation scheme [7] may wrongly classify the cause
of packet losses on handover due to a large difference of
minimum RTT between a fast link and a slow link. As shown
in Figure 3, the modified loss differentiation scheme works
well in the case of the vertical handover from WLAN to 3G.

4.2. Proposed Schemes. The proposed scheme I is a combi-
nation of LD [7] and TCP-DCR [8]. The proposed scheme
II is a modified loss differentiation scheme (introduced in
Section 4.1.2) which borrows handover detection scheme
from F-RTO [9] and incorporates TCP-DCR [8] for perfor-
mance improvement for 3G.

Figure 4 shows the state transition diagram of the pro-
posed Scheme II. The diagram includes states for reset, slow-
start, fast recovery, congestion avoidance, F-RTO Transmit
Two Packets (handover detector borrowed from F-RTO),
DCR (distinguishes between packet-reordering and packet
losses via delayed retransmission), and the modified loss
differentiation. The congestion window starts from the reset
state and then grows in slow-start state.

The event of three-duplicate ACKs leads to fast recovery
of halving the congestion window, and then the state moves
to congestion avoidance state. Timeout leads to F-RTO state
which is to avoid delay spike due to vertical handover. F-
RTO [9] retransmits the packet that triggered timeout on
entering retransmission timeout and waits for the ACK.
The sender’s receipt of two new ACKs aloows the sender to
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Figure 2: Loss differentiation on vertical handover from 3G
network to WLAN.

transmit new packets continuously in congestion avoidance
state. However, on receiving one or two duplicate ACKs, the
state goes to reset. Whenever the state goes to F-RTO, Tmin

is set to a large value and is updated per every RTT. Tavg

is set to a new measured RTT. Tdev is set to a half of the
new measured RTT. This reset operation allows the modified
loss differentiation scheme to adapting itself to the change in
propagation delay due to vertical handover to new wireless
network. Furthermore, the modified loss differentiation is
not invoked by three-duplicate ACKs for n rounds. This
pause prevents the congestion window from reacting to
congestion losses or the number of dropped packets with
a set of parameters which have become invalid on vertical
handover. The parameters include Tmin, Tavg, and Tdev. In our
simulation, we set n to be equal to 1. In our simulation, the
values of the parameters measured for the first time after the
handover are used to correctly infer the cause of packet losses.

From slow-start state, the state changes into congestion
avoidance which grows the congestion window by 1 when the
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Figure 3: Loss differentiation on vertical handover from WLAN to
3G network.

size of congestion window goes higher than the threshold.
Three-duplicate ACKs involve the modified LD and DCR.
When the third duplicate ACK is received, the LD determines
the cause of a packet loss, and the sender with DCR waits
for a normal ACK for the duration of one RTT. The waiting
duration can be adjusted according to network condition, for
example, wireless loss of retransmitted packets and we use
the duration used in TCP-DCR [8]. If the sender receives
a normal ACK, the state stays in congestion avoidance.
Otherwise, the state moves to the fast recovery if the modified
LD identifies congestion loss or stays in the congestion
avoidance otherwise (wireless loss). In congestion avoidance,
the timeout involves F-RTO as described above.

In summary, this proposed scheme II uses the handover
detection mechanism from F-RTO to reset the parameters
to be used by the modified LD and incorporates the TCP-
DCR scheme to improve throughput over 3G network. The
LD scheme uses the parameters such as Tcur, Tavg, and Tdev

which already exist in the original TCP. Tmin is the minimum

value of Tcur. The DCR uses only Tavg to wait for recovery
of lost packet at link layer. F-RTO scheme does not use
any information. The proposed scheme II needs no extra
information other than available in a TCP sender. Thus the
proposed scheme II can be implemented easily at the sender-
side without involving any change in intermediate routers or
receivers.

4.3. Behavior on Packet Loss. The behaviors of proposed
scheme II are shown in Figures 5, 6, and 7. On receipt of
the third duplicate ACK, the scheme determines whether the
network is congested or not. A flag indicating congestion
is set to true if inequality (1) is satisfied, or set to false,
otherwise. We recall the equation as follows:

Tcur − Tavg

Tdev
> 2
(
Tmin

Tcur

)k
− 1. (3)

The scheme then sets the timer to one RTT to wait
for link level retransmission of the packets requested in the
3rd duplicate ACK and continues transmitting new packets
without reducing the congestion window. When a new ACK
is received within one RTT, the sender cancels the timer as
shown in Figure 5. This part overlaps with the scheme in
TCP-DCR [8].

However, the retransmission procedure is involved when
duplicate ACKs are still received after one RTT, and then the
decision of retaining or halving the current window is made
according to the congestion flag. If it is false, the TCP sender
retains the current congestion window as shown in Figure 6.
If it is true, the TCP sender halves the congestion window as
shown in Figure 7.

The DCR part can handle certain patterns of packet-
reordering, but not all possible patterns. For example,
packet-reordering of 1-3-2 can be handled since it is a
swapping of a packet with the next packet. DCR waits for one
RTT after receiving duplicate ACKs and thus can handle such
packet-reordering. However, DCR scheme cannot handle the
packet-reordering of 1-5-4-2-3 because waiting for one RTT
might not be enough for this case.

4.4. Behaviors on Timeout Event. On the timeout event,
detailed behaviors are shown in Figures 8 and 9 for a vertical
handover and a normal timeout, respectively.

F-RTO scheme is involved to send two probe packets and
to wait for ACKs. If a new ACK arrives, the sender regards the
timeout event as due to vertical handover (see Figure 8) and
resets RTT values (Tmin, Tavg, and Tdev) to the initial values.
However, if duplicate ACKs arrive, the sender retransmits the
lost packets immediately with setting congestion window to
1 (see Figure 9).

5. Performance Evaluation

5.1. Simulation Setup. In this section, we evaluate the TCP
throughput performance of TCP-Sack, DCR, DCR-FRTO,
proposed scheme I and proposed scheme II through the ns-
2 simulations (Version 2.27) [20]. The proposed scheme I is



EURASIP Journal on Wireless Communications and Networking 7

Start

Connect

Reset W = 1

New ACK

New ACK
if W < ssthresh Slow-start W =W × 2

3rd Dup ACK
(fast retransmission)

Fast recovery W =W/2Dup ACK

Dup ACK

Retransmission
timeout

New ACK
if W > ssthresh

Retransmission
timeout

New ACK

Dup ACK

3rd
Dup ACK

Normal
ACK

DCR
transmit normal packets

within one RTT

No normal ACKs
in one RTT

Wireless
channel

error if no

New ACK

Loss differentiation
& retransmission

T − T
Tdev

> 2×
(
Tp
T

)k
− 1

Congestion avoidance
W =W + 1

F-RTO
transmit two packets

Congestion loss
if yes

Two new ACKs
(spurious timeout)

Retransmission
timeout

W : congestion window
ssthresh: slow-start threshold
Grey rectangle: added features related states
White rectangle: standard TCP related states

Figure 4: Proposed TCP modification in response of vertical handover. After returning congestion avoidance from F-RTO, loss
differentiation should not be involved by 3rd Dup ACK for n rounds.

Congestion response delay
timer (=one RTT)RTT

No retransmission or
window reduction

RTT

Congestion response
delay timer cancelled

Packet loss
due to wireless
channel errors

Link level
retransmission

of packet 2

Receiver

Base
station

Sender 1 234 5 6 78 9 10

2×22 2 6 7 8 910

x

Figure 5: Behavior of the proposed scheme II: packet-reordering due to retransmission at wireless link layer.

a simple combination of TCP-DCR and LD. The proposed
scheme II is introduced in Section 4.2.

The network model is shown in Figure 10. Two scenarios
of vertical handover are considered. The first scenario is 3G-
to-WLAN handover which denotes handover from 3G to
WLAN, and the second one is (W-to-3G) which denotes
handover from WLAN to 3G. For each scenario, we also

consider two different situations which are noncongestion
and congestion. In noncongestion scenarios, the proposed
schemes are able to improve TCP throughput on both
wireless losses and packet-reordering compared to TCP-
SACK and TCP-DCR. Congestion scenarios are more real-
istic cases with forward cross traffic causing congestion
losses over wired paths while wireless packet losses and
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Figure 7: Behavior of the proposed scheme II: a congestion loss.

packet-reordering still happen on wireless paths. The reason
for considering congestion scenarios is to test the ability of
the proposed schemes to differentiate the congestion loss
on handover where parameters experience rapid change.
In these congestion scenarios, we mainly focus on the
throughput improvement by the proposed scheme II on
congestion losses compared to the proposed scheme I as well
as known schemes in literature.

In the simulation, we employ a pause event for 30 seconds
as a vertical handover from a network to another network.
The change in network parameters follows the pause event.
The simulation time is equal to 500 seconds. Simulations run
30 times. 95% confidence interval is shown along with the
average TCP throughput.

In the simulations, we use the Gilbert two-state Markov
chain to model the packet loss process over WLAN [15]. In
particular, we assume that pw,WLAN is set equal to 0.1% when
the channel is in the Good state and is set equal to 10%
when the channel is in the Bad state, deterministically. The
duration in the Good state is assumed to be equal to 1 second
whereas the duration in the Bad state is assumed to be equal

to 100 milliseconds. After the duration, the state transits to
the Good state or the Bad state with a probability P = .5.
The correlated loss model is generally used for modeling the
packet loss model of IEEE 802.11 wireless LAN [15].

For the packet loss model over 3G link, we set the packet
reordering rate to be as high as 5% and the packet loss rate
to be as low as 0.5% with uniform distribution. The packet-
reordering can be simply produced by swapping a packet
for the next packet. We follow the simulation scenario in
TCP-DCR [8] assuming that the underlying mechanism is
a simple link-level retransmission scheme, possibly NACK-
based, that does not attempt in-order delivery [8, 16].

For the congestion scenario, we inject the forward cross
traffic consisting of several TCP connections to cause 1.5%
congestion losses rate. This cross traffic also increases the
end-to-end delay over the path due to queuing delay. We
summarize the configurations in Table 1.

The TCP throughputs are represented as percentages of
the maximum bandwidth of the corresponding networks. If
a mobile node performs handover from 3G cellular network
of 1 Mbps to WLAN of 10 Mbps as in Table 1, 50% TCP
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throughput before handover is translated to 0.5 Mbps while
40% TCP throughput after handover is translated to 4 Mbps.
Please refer to Figures 11–14.

5.2. Throughput Improvement with Vertical Handover under
Noncongestion. We evaluate the throughput of a single TCP
connection during lifetime including one single handover
event between WLAN and cellular network. The throughput
of the TCP connection can be affected by wireless packet loss
over WLAN and cellular network, packet-reordering over
cellular network, and delay spike due to handover process.

Figure 11 shows TCP throughputs for proposed schemes
(I and II) against known schemes when a mobile node
performs the handover from cellular network to WLAN.
Before the handover, the proposed schemes I and II improve
the throughput by 26% compared with DCR. This result
indicates that the modified loss differentiator improves TCP
throughput of the DCR scheme. After the handover to
WLAN, the packet-reordering does not happen any more.
The only possible loss pattern is wireless loss (nonconges-
tion). The proposed schemes improve the throughput by
60% compared with other schemes (Sack, DCR, and DCR-
FRTO).

Figure 12 shows TCP throughputs for proposed schemes
(I and II) against known schemes when a mobile node
performs the handover from WLAN to cellular network.
Before the handover, proposed schemes I and II improve the
throughput over WLAN by about 85% compared with Sack,
DCR, and DCR-FRTO. The difference between proposed
schemes I and II is negligible. Since there are only wireless
losses over WLAN (noncongestion), throughputs for the
other TCP schemes without loss differentiator are limited.
After the handover, the loss pattern changes to coexistence
of packet losses and/or packet-reordering. Proposed schemes
I and II can achieve the throughput as high as up to 60%
of the link bandwidth, and they improve the throughput
by about 87% compared with DCR and DCR-FRTO. DCR
scheme improves the throughput by 100% compared with
Sack, but DCR scheme cannot help halving its congestion
window on packet losses in 3G communication system
[10].

F-RTO facilitates the TCP sender’s detection of the
spurious timeout inferred from delay spike without packet
losses and prevents the TCP connection from entering the
timeout process. When the mobile node moves from WLAN
to 3G cellular network, DCR-FRTO and proposed scheme
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Table 1: Simulation Configurations.

Term 3G cellular WLAN

Packet loss model Uniform random loss model with rate 0.5%
Gilbert Markov 2-state model with good state 0.1%, bad
state 10%, and transition rate 0.5

Bandwidth 1 Mbps 10 Mbps

Delay 200 ms 20 ms

Packet-reordering model

Uniform and random packet-reordering
probability of 5%. Swap a packet for the next
packet.

—

(5% is chosen out of the channel error rate range
from 0% to 8% in [8, Figure 5, page 523])

Wired part

Congestion loss model
Forward cross traffic (10 connections) with congestion
loss rate 1.5%

Bandwidth 20 Mbps

Delay 1 ms

Router buffer 30 packets

Vertical Handover

Vertical handover Event At 250 s, simulation is paused during 30 seconds

II slightly improves the throughput by 1.2% and 1.8%
compared with DCR and proposed scheme I, respectively.
However, when the mobile node moves from cellular
network to WLAN, the improvement can be negligible.
Without F-RTO, the congestion window is shrunk to 1 due
to RTO on a vertical handover. But, the high bandwidth
of the new fast network can help the congestion window
to be recovered to the previous value in a short time.
Thus, F-RTO can affect the improvement in throughput only
for the case of vertical handover from WLAN to cellular
network.

5.3. Throughput Improvement with Vertical Handover under
Congestion. In this scenario, we assume that the wired path
is congested with congestion packet loss rate of 1.5% due
to the forward cross traffic. The proposed schemes improve

the throughput by about 44% compared with DCR over
cellular network before handover. However, after handover
to WLAN, both of proposed schemes I and II improve the
throughput by 480% and 457% compared with DCR and
DCR-FRTO, respectively. The reason for this great difference
is that unlike proposed schemes, the throughputs of previous
schemes are suppressed by congestion after handover from a
slow link to a fast link.

Figure 13 shows TCP throughputs for proposed schemes
(I and II) against known schemes when a mobile node
performs the handover from cellular network to WLAN
with congestion in the wired part while Figure 14 shows
TCP throughputs when a mobile node performs the han-
dover from WLAN to cellular network. After handover to
WLAN, throughput is expected to increase due to larger
bandwidth over WLAN. Proposed scheme II can increase the
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throughput from 229 kbps to 734 kbps. Proposed scheme I
increases the throughput from 238 kbps to 459 kbps. In these
two cases, the modified LD has made the TCP throughput
to be higher with differentiation of wireless losses from
congestion losses.

In the proposed scheme I, LD regards most of packet
losses as wireless losses just after the handover. The threshold
of LD is larger than the newly measured RTT because the
mean RTT and the deviation remain high immediately after
the handover. This makes TCP keep current congestion
window even on a congestion loss, which may eventually
result in an unnecessary RTO. The RTO holds transmission
of normal packets during timeout and reduces its congestion
window to 1 after the timeout. Only when the mean RTT and
the deviation are adapted to the WLAN, the LD can correctly
detect congestion losses.

This is remedied in proposed scheme II. The mean
RTT and the deviation are updated on handover to new
network. This allows proposed scheme II to adapt to new
network faster than the proposed scheme I. Furthermore,
the congestion window just after handover is kept to be as
same as a value before handover by F-RTO. This implies that
the LD in proposed scheme II can detect congestion losses
just after handover. The TCP can avoid RTO. This explains
why proposed scheme II improves the TCP throughput
by 59.9% compared to proposed scheme I over WLAN
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Figure 13: Handover from cellular network to WLAN under
congestion.

after the handover. Throughputs for other schemes are
reduced by about 50% compared to throughputs before
handover.

In the scenario of the handover from WLAN to cellular
link over the congested path, the throughput of proposed
scheme II in Figure 14 is still higher than other schemes.
Especially, the throughput of proposed scheme II is 4.5%
higher than proposed scheme I over the cellular network after
the handover. This improvement is due to our modification
as above mentioned.

The difference between proposed schemes I and II is
negligible in noncongestion scenario (Figures 11 and 12).
The large difference in WLAN throughput in Figures 13
and 14 can be explained as follows. In our simulation, the
forward cross traffic is added on the wired path which
has much shorter latency than the wireless paths (3G and
WLAN). The added traffic dominates the TCP traffic on
WLAN or 3G since it flows only over wired path of high
bandwidth (20 Mbps) and very short delay (1 millisecond).
Still, the throughput of TCP traffic over WLAN is much
larger than the throughput of TCP traffic over the 3G path
since the WLAN has much larger bandwidth (10 Mbps)
and much shorter delay (20 milliseconds) than 3G path
of 1 Mbps bandwidth and 200 milliseconds delay. Thus,
before the handover, the suppressed TCP throughput over
3G is much smaller than that over WLAN. Immediately after
the handover to WLAN, the TCP throughput is slow to
recover in previous schemes (Sack, DCR, DCR-FRTO) and
is faster to recover in proposed schemes, but all still remain
small due to the limited TCP throughput over 3G before
handover as shown in Figure 13. However, the situation is
different when handover is performed from WLAN to 3G
as shown in Figure 14. The TCP throughput over WLAN
before handover is large compared with that over 3G before
handover. Thus the TCP throughput over 3G after handover
is large whether the schemes are slow to recover (in previous
schemes) or fast (proposed schemes). Thus, the big difference
in WLAN throughput can be explained by the difference
in TCP throughputs over 3G and WLAN under congested
condition.
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6. Conclusion

We modified the TCP congestion control scheme to improve
throughput over the vertical handover between two most
popular wireless networks, that is, 3G cellular networks
and wireless LANs. The proposed scheme is an end-to-
end scheme which is easy to implement because it uses
information readily available to TCP sender. The modified
loss differentiation which employs handover detector scheme
from F-RTO and incorporates TCP-DCR is shown to
greatly improve the TCP throughput against the coexistence
of congestion losses, wireless packet losses, and packet-
reordering. When the vertical handover occurs, the proposed
scheme is robust to the change in loss pattern over wireless
link. Our modification can avoid unnecessary retransmission
and reduction of congestion window invoked by spurious
timeouts during handover. We find that our modification
excels other known schemes (Sack, DCR, FRTO) even when
the wired part is congested.

Acknowledgment

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (2009-0077261).

References

[1] M. Stemm and R. H. Katz, “Vertical handoffs in wireless
overlay networks,” Mobile Networks and Applications, vol. 3,
no. 4, pp. 335–350, 1998.

[2] M. Yosuke, M. Takahiro, and Y. Miki, “TCP congestion control
with ACK-pacing for vertical handover,” in Proceedings of
the IEEE Wireless Communications and Networking Conference
(WCNC ’05), vol. 3, pp. 1497–1502, March 2005.

[3] H. Huang and J. Cai, “Improving TCP performance during
soft vertical handoff,” in Proceedings of the 19th International
Conference on Advanced Information Networking and Applica-
tions (AINA ’05), vol. 2, pp. 329–332, March 2005.

[4] Y. Gou, D. A. J. Pearce, and P. D. Mitchell, “A receiver-based
vertical handover mechanism for TCP congestion control,”

IEEE Transactions on Wireless Communications, vol. 5, no. 10,
pp. 2824–2833, 2006.

[5] S.-E. Kim and J. A. Copeland, “Interworking between WLANs
and 3G networks: TCP challenges,” in Proceedings of the IEEE
Wireless Communications and Networking Conference (WCNC
’04), vol. 2, pp. 1252–1257, 2004.

[6] B. Sardar and D. Saha, “A survey of TCP enhancements for
last-hop wireless networks,” IEEE Communications Surveys &
Tutorials , vol. 8, no. 3, pp. 20–34, 2006.

[7] C.-H. Lim and J.-W. Jang, “Robust end-to-end loss differentia-
tion scheme for transport control protocol over wired/wireless
networks,” IET Communications, vol. 2, no. 2, pp. 284–291,
2008.

[8] S. Bhandarkar, N. E. Sadry, A. L. Narasimha-Reddy, and N.
H. Vaidya, “TCP-DCR: a novel protocol for tolerating wireless
channel errors,” IEEE Transactions on Mobile Computing, vol.
4, no. 5, pp. 517–529, 2005.

[9] P. Sarolahti, M. Kojo, and K. Raatikainen, “F-RTO: an
enhanced recovery algorithm for TCP retransmission time-
outs,” ACM SIGCOMM Computer Communication Review,
vol. 33, no. 2, pp. 51–63, 2003.

[10] J. Chen and V. C. M. Leung, “Improving end-to-end quality of
services in 3G wireless networks by wireless early regulation of
realtime flows,” in Proceedings of the IEEE International Sym-
posium on Personal, Indoor and Mobile Radio Communications
(PIMRC ’03), Beijing, China, September 2003.

[11] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris,
“Link-level measurements from an 802.11b mesh network,”
in Proceedings of the International Conference of the Special
Interest Group on Data Communication (SIGCOMM ’04),
Portland, Ore, USA, August 2004.

[12] IEEE 802.11 Part 11, “Wireless LAN medium access control
(MAC) and physical layer (PHY) specification: higher-speed
physical layer extension in the 2.4 GHz band,” IEEE, 1999.

[13] R. Fantacci, “Queuing analysis of the selective repeat auto-
matic repeat request protocol wireless packet networks,” IEEE
Transactions on Vehicular Technology, vol. 45, no. 2, pp. 258–
264, 1996.

[14] M. Rossi and M. Zorzi, “Analysis and heuristics for the
characterization of selective repeat ARQ delay statistics over
wireless channels,” IEEE Transactions on Vehicular Technology,
vol. 52, no. 5, pp. 1365–1377, 2003.

[15] A. Gurtov and S. Floyd, “Modeling wireless links for trans-
port protocols,” ACM SIGCOMM Computer Communications
Review, vol. 34, no. 2, pp. 85–96, 2004.

[16] TCP-DCR source codes for ns-2 simulations, http://dropzone
.tamu.edu/∼sumitha/research.html.

[17] IEEE Std P802.21/D02.00, IEEE Standard for Local and
Metropolitan Area Networks: Media Independent Handoff
Services, September 2006.

[18] Y. S. Choi, W. Lee, and Y. Z. Cho, “TCP with explicit handoff
notification for a seamless vertical handover,” in Proceedings
of International Conference on Information Networking (ICOIN
’08), vol. 5200 of Lecture Notes in Computer Science, pp. 831–
840, 2008.

[19] A. Gurtov and J. Korhonen, “Effect of vertical handovers on
performance of TCP-friendly rate control,” ACM SIGMOBILE
Mobile Computing and Communications Review, vol. 8, no. 3,
pp. 73–87, 2004.

[20] NS-2 network simulator (ver 2). LBL, http://www-mash.cs
.berkeley.edu/ns.


